
Async internals in .NET

ADAM FURMANEK

@furmanekadam contact@adamfurmanek.pl
#DevSum19

Throughout the entire process, a
key takeaway is thatno thread is
dedicated to running the task.
HT TPS: / /DOCS.MICROSOFT.COM/EN-US/DOTNET/STANDARD/ASYNC-IN-DEPTH

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 2

About me

.NET developer for 5 years.

Scala Developer at Amazon.

Blogger, public speaker.

Author of .NET Internals Cookbook.

http://blog.adamfurmanek.pl

contact@adamfurmanek.pl

furmanekadam

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 3

http://blog.adamfurmanek.pl/
mailto:contact@adamfurmanek.pl
https://twitter.com/furmanekadam

Donõtforgetto evaluate
thissession in the DevSumapp!

#DevSum19

Agenda
Primitives under the hood.

Taskdetails.

SynchronizationContextinternals.

State machine.

Waiting for async voidand handling exceptions.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 5

Primitives under the
hood

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 6

Native thread
¢ǿƻ ǘȅǇŜǎΥ ŦƻǊŜƎǊƻǳƴŘ ŀƴŘ ōŀŎƪƎǊƻǳƴŘ όŘƻƴΩǘ ǎǘƻǇ ŀǇǇƭƛŎŀǘƛƻƴ ŦǊƻƳ ǘŜǊƳƛƴŀǘƛƴƎύΦ

Consists of Thread Kernel Object, two stacks (user mode and kernel mode) and Thread
Environment Block(TEB).

User mode stack by default has 1 MB, kernel mode has 12/24 KB.

Has impersonation info, security context, Thread Local Storage(TLS).

Windows schedules threads, not processes!

How many threads does the notepad.exehave?

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 7

How many threads does a notepad have?

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 8

Managed thread
Has ID independent of native thread ID.

Can have name.

Can be suspended but this should not be done! Can be
aborted by Thread.Abortōǳǘ ǘƘƛǎ ŘƻŜǎƴΩǘ ƎǳŀǊŀƴǘŜŜ
anything.

Precommits stack when created.

Unhandled exception kills the application in most
cases.

In .NET 1 it was different:
Exception in other thread was printed to the console and
the thread was terminated.
Exception on the finalizer was printed to the console and
finalizer was still working.
Exception on the main thread resulted in application
termination.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 9

ThreadPool
Different from Win32 thread pool. Used by tasks,
asynchronous timers, wait handles and
ThreadPool.QueueUserWorkItem.

Static class ςyou cannot just create your own thread pool.

Threads work in background, do not clear the TLS, have
default stack size and default priority.

One pool per process, its size depends on the size of the
virtual address space. Threads are created and destroyed
as neededusing hill climbing algorithm.

Two types of threads: for ordinary callbacks and for I/O
operations.

Thrown exception is held until awaiting and then
propagated if possible (thrown out of band for async void).
In .NET 1 it was different - exception on a thread pool was
printed to the console and the thread was returned to the
pool.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 10

http://aviadezra.blogspot.com/2009/06/net-clr-thread-pool-work.html

ThreadPoolimplementation
public static class SimpleThreadPool
{

private static BlockingCollection <Action > _work = new BlockingCollection <Action >();
static SimpleThreadPool () {

for (int i = 0; i < Environment .ProcessorCount ; i ++) {
new Thread (() => {

foreach (var action in _work.GetConsumingEnumerable ()) {
action();

}
}) { IsBackground = true }.Start();

}
}
public static void QueueWorkItem(Action workItem) { _ work.Add (workItem); }

}

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 11

Asynchronous Programming Model
(APM)
BeginOperationreturns an object implementing
IAsyncResult.

Triggers the asynchronous calculations on different
thread.
Can also accept a callback to be called when the
operation is finished.

IAsyncResult:
Has some AsyncState.
Contains WaitHandlewhich we can use to block the
application.
Has flag indicating whether the operation is
completed.

EndOperationaccepts IAsyncResultas a parameter
and returns the same as synchronous counterpart.

Throws all exceptions if needed.
LŦ ǘƘŜ ƻǇŜǊŀǘƛƻƴ ƘŀǎƴΩǘ ŦƛƴƛǎƘŜŘΣ ōƭƻŎƪǎ ǘƘŜ ǘƘǊŜŀŘ.

var fs = new FileStream (@"C:\ file.txt ");

byte [] data = new byte [100];

fs. BeginRead(data, 0, data.Length ,
(IAsyncResult ar) =>

{

i nt bytesRead = fs. EndRead(ar);

fs.Close ();

}, null

);

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 12

Event-based Asynchronous Pattern (EAP)
MethodNameAsync.

Triggers the operation on a separate thread.

MethodNameCompleted.

Event fired when the operation finishes.

Passes parameter AsyncCompletedEventArgs.

AsyncCompletedEventArgs:

Contains flag if the job was cancelled.

Contains all the errors.

Has some UserState.

Can be canceled.

Can be used easily with BackgroundWorker.

backgroundWorker.DoWork += backgroundWorker_DoWork;

private void backgroundWorker_DoWork(object sender,
DoWorkEventArgs e)

{

// ...

}

private void
backgroundWorker_RunWorkerCompleted (object sender,
RunWorkerCompletedEventArgs e)

{

// ...

}

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 13

Task-based Asynchronous Pattern (TAP)
Task.Runaccepting delegate triggers the job:

Equivalent to
Task.Factory.StartNew(job, CancellationToken.None, TaskCreationOptions.DenyChildAttach, TaskScheduler.Default);

Unwraps the result if needed (so we get Task<int>instead of Task<Task<int>>).

Taskcan be created manually via constructor and schedulled using Startmethod.

Can be joined by using ContinueWith.

Exceptions are caught and propagated on continuation.

Can be used with TaskCompletionSource.

Can be cancelled with CancellationToken.

Can report progress using IProgress<T>.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 14

Parallel Language Integrated Queries
(PLINQ)
Created when AsParallelcalled on IEnumerable. Can be reverted by AsSequential.

Operations defined in ParallelEnumerableclass.

Can be ordered by calling AsOrdered.

Task merging can be configured by specifying ParallelMergeOptions.

Maximum number of concurrent tasks can be controlled using WithDegreeOfParallelism.

Parallelism is not mandatory! Can be forced with ParallelExcecutionMode.

Each AsParallelcall reshuffles the tasks.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 15

async and await
await can be executed on anything awaitable ςnot necessarily a Task!

Task.Yield returns YieldAwaitable

Duck typing- awaitable type must be able to return GetAwaiter()with the following:
Implements INotifyCompletioninterface

bool IsCompleted { get ; }

void OnCompleted(Action continuation);

TResult GetResult (); // or void

asyncmeans nothing τit only instructs the compiler to create a state machine.

We can make any type awaitable using extension methods!

Very similar to foreach.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 16

Awaiting on integer

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 17

Task details

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 18

Two types of tasks
DELEGATE TASK ςCPU-BOUND

Has some code to run.

Mostly in TPLworld.

Created by TaskFactoryor by constructor.

Used in PLINQ.

Can be scheduled and executed.

PROMISE TASK ςI/O-BOUND

Signals completion of something.

Mostly in asyncworld.

Task.FromResult
Creates completed Taskwith result.

Task.Delay
Equivalent of Thread.Sleep.

Task.Yield
Returns YieldAwaitable.

Schedules continuation immediately

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 19

Taskstate

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 20

https://blog.stephencleary.com/2014/06/a-tour-of-task-part-3-status.html

Taskcreation
CONSTRUCTOR

Do not use!
Creates only delegate Task.

Created Taskis not scheduled so will not start
running unless asked to.

Created Taskcan be started by calling Start
method (and optionally providing a scheduler).

FACTORY

Task.Run()

Task.Factory.StartNew()

PLINQ

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 21

Task.ScheduleAndStart

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 22

TaskScheduler
Schedules tasks on the threads ςit makes sure that the work of a task is eventually executed.

For TPLand PLINQis based on the thread pool.

Supports work-stealing, thread injection/retirement and fairness.

Two types of queues:
Global ςfor top level tasks

Local ςfor nested/child tasks, accessed in LIFO order

Long running tasks are handled separately, do not go via global/local queue.

We can implement our own schedulers.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 23

TaskSchedulerimplementation

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 24

public class MyTaskScheduler : TaskScheduler
{

private readonly MyContext context;
public BlockingCollection <Task> tasks = new BlockingCollection <Task>();

protected override IEnumerable <Task> GetScheduledTasks ()
{

return tasks;
}

protected override void QueueTask(Task task)
{

tasks.Add (task);
}

protected override bool TryExecuteTaskInline (Task task , bool taskWasPreviouslyQueued)
{

return TryExecuteTask (task);
}

}

Task.ContinueWith
Creates a continuation that executes asynchronously when the target task complets

Can specify CancellationToken

Can specify TaskScheduler

Can specify TaskContinuationOptions

Options:
OnlyOnCompletion, OnlyOnCanceled, OnlyOnFaulted, NotOnCanceled, NotOnFaulted,
NotOnCompletion ςto choose when it is supposed to run

AttachedToParentςto create hierarchy of tasks

ExecuteSynchronously, RunContinuationAsynchronouslyςto choose the thread running it

HideSchedulerςto run using the default scheduler instead of the current one

LongRunningςmore or less to run on dedicated thread

Prefer fairness ςto run in order

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 25

Task.ContinueWith

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 26

Task.Complete

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 27

Task.TrySetResult

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 28

Task.FinishContinuations

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 29

StandardTaskContinuation.Run

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 30

Disposing a Task
Taskmayallocated WaitHandlewhich implements IDisposable.

Disposing a Taskin .NET 4 was making it unusable τǿŜ ŎƻǳƭŘƴΩǘ ŜǾŜƴ ǎŎƘŜŘǳƭŜ ŎƻƴǘƛƴǳŀǘƛƻƴΦ

In .NET 4.5 this was changed, Taskis still usable, only WaitHandleis not.

WaitHandlewas created when Task.WaitAnyor Task.WaitAllwas called, this is no longer true.

Starting in .NET 4.5 WaitHandleis allocated only when it is explicitly accessed.

Summary:
.NET 4 τŘƻƴΩǘ ŘƛǎǇƻǎŜ unless you have to. Do so only if you are sure that the Taskwill never be used
again.

.NET 4.5 τƛǘ ǎƘƻǳƭŘƴΩǘ ƳŀƪŜ ŀ ŘƛŦŦŜǊŜƴŎŜ ǎƻ ǇǊƻōŀōƭȅ ŘƻƴΩǘ ōƻǘƘŜǊΦ

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 31

Task.Status Task.Id
State IsCompleted IsCanceled IsFaulted

RanToCompletion True False False

Canceled True True False

Faulted True False True

Other False False False

Generated on demand.

Can be reused τyou can generate collision!

Independent from TaskScheduler.Id.

0 is not a valid identifier.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 32

ValueTask
Taskis a class so it is allocated on the heap and needs to be collected by GC.

To avoid explicit allocation we can use ValueTaskwhich is a struct and is allocated on the stack.

The trick is in the second constructor parameter τthe token.

public ValueTask(IValueTaskSource<T> source, short token);

See https:// github.com/kkokosa/PooledValueTaskSource

Conceptually it was used in Midoriτ.NET-based operating system implemented by Microsoft
Research.

αIt ǎǘƛƭƭ ƪƛƭƭǎ ƳŜ ǘƘŀǘ L ŎŀƴΩǘ Ǝƻ ōŀŎƪ ƛƴ ǘƛƳŜ ŀƴŘ ƳŀƪŜ Φb9¢Ωǎ ǘŀǎƪ ŀ structέ τJoe Duffy in
http://joeduffyblog.com/2015/11/19/asynchronous-everything/

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 33

https://github.com/kkokosa/PooledValueTaskSource
http://joeduffyblog.com/2015/11/19/asynchronous-everything/

SynchronizationContext
internals

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 34

ISynchronizeInvokeςlife before
SynchronizationContext
Provides a way to synchronously or asynchronously execute a delegate:

InvokeRequiredςchecks if invoking is requred, effectively if we are running on the same thread

Invokeςsynchronous invocation

BeginInvoke, EndInvokeςasynchronous invocation

It ties communication and threads.

LŦ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ǎǇŜŎƛŦƛŎ ǘƘǊŜŀŘ ςas in ASP.NET ςwe should not use ISynchronizeInvoke.

This is how SynchronizationContextemerged.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 35

ExecutionContextand other
Bag holding logical context of the execution.

Contains SynchronizationContext, LogicalCallContext, SecurityContext, HostExecutionContext,
CallContextetc.

Does not need to rely on Thread Local Storage(TLS) and is passed correctly through
asynchronous points τwill follow to the other thread.

Before .NET 4.5 LogicalCallContextǿŀǎ ǇŜǊŦƻǊƳƛƴƎ ǎƘŀŘƻǿ ŎƻǇƛŜǎ ŀƴŘ ŎƻǳƭŘƴΩǘ ōŜ ǳǎŜŘ
between asynchronous points of invocation.

Starting in .NET 4.6 there is an AsyncLocal<T>class working as TLSvariables for tasks.

Methods with Unsafe*do not propagate the context τfor instance
ThreadPool.UnsafeQueueUserWorkItem.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 36

AsyncLocal<T>

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 37

SynchronizationContext
The SynchronizationContextclass is a base class that provides a free-threaded context with no
synchronization:

OperationStartedand OperationCompletedςhandles notifications

Sendςsynchronous message

Postςasynchronous message

Currentςgets synchronization context for the thread

The purpose of the synchronization model implemented by this class is to allow the internal
asynchronous/synchronous operations of the common language runtime to behave properly
with different synchronization models

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 38

SynchronizationContext
When awaiting the awaitable type the current context is captured. Later, the rest of the method is posted on the
context. Effectively, synchronization context is a global variable.

If SynchronizationContext.Currentis not null then this context is captured:
For UI thread it is UI context ςWindowsFormsSynchronizationContext, DispatcherSynchronizationContext,
WinRTSynchronizationContext, WinRTCoreDispatcherBasedSynchronizationContext

Implemented via event loop, for instance.

For ASP.NET request it is ASP.NET context τ AspNetSynchronizationContext
This can be different thread than original one, but still the request context is the same.

Otherwise it is current TaskScheduler:
TaskScheduler.Defaultis the thread pool context.

ASP.NET Core ŘƻŜǎƴΩǘ ƘŀǾŜ ǎǇŜŀǊŀǘŜ ŎƻƴǘŜȄǘ ςno risk of deadlock, no need to use ConfigureAwait(false)

We can use ConfigureAwait(false)to avoid capturing the context. Rule of thumb τalways use it unless you are
sure that you need a context.

Each method can have its own context.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 39

SynchronizationContext
Specific thread
executing the code

Delegates
executed serially

Delegates
executed in order

Send is
synchronous

Post is
asynchronous

Default (Thread
Poolbased)

No ςany thread in
the thread pool

No No Yes Yes

ASP.NET No ςany thread in
the thread pool

Yes No Yes No

WinForms Yes ςUI thread Yes Yes Only if called on
the UI thread

Yes

WPF Yes ςUI thread Yes Yes Only if called on
the UI thread

Yes

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 40

In ASP.NET only one continuation can be executed at a time for given request - no concurrency.
In ASP.NET Core multiple continuations can run concurrentlyςwe have concurrency and parallelism.

State machine

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 41

State machine 1 ςbefore compilation
OurAsyncMethod has four parts

First part will run synchronously as the
Task.FromResultis already resolved

Second part will eventually block because of the
delay

Third part will block and explicitly create
continuation

Fourth part with just throw exception

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 42

State machine 2 ςmethod after
compilation

asyncis no longer there τit is only on C# level.

DebuggerStepThroughAttribute tells the debugger to step
through (ignore) the method.

Program.<OurAsyncMethod>d__1<OurAsyncMethod>d__
type created to encapsulate state machine pieces.

State is initialized to -м ƳŜŀƴƛƴƎ αǊŜŀŘȅ ǘƻ Řƻ ǎƻƳŜ ǿƻǊƪέΦ

AsyncTaskMethodBuilderis a .NET class capable of
executing the state machine.

Effectively we prepare the machine, start it and return the
Taskobject with the result.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 44

State machine 3 ςfields
Program.<OurAsyncMethod>d__1<OurAsyncMethod>d__
type created to encapsulate state machine pieces.

<OurAsyncMethod>d__.<>1__statevariable maintains the
state

Initially it is set to -1ƳŜŀƴƛƴƎ αƴƻǘ ǎǘŀǊǘŜŘέ

-2ƳŜŀƴǎ αŘƻƴŜέ

Non-negative states indicate different pieces of the state
machine

Three different awaiters as we have await three times in
the original method.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 45

State machine 4 ςStartmethod

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 46

State machine 5 ςexception handling
We capture the state to local variable.

We handle all exceptions and terminate the
machine if needed.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 47

State machine 6 ςstates
Awaiter at the beginning for different result
types.

Four different branches as we have await
three times generating four blocks.

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 48

State machine 7 ςnum = -1, state = -1
await Task.FromResult (false);

It starts in default.

We print to the console
and get awaiter for the
result.

If it is completed (as this is
the case now)

We call GetResultwhich
returns the value
immediately

We end in line 72

num = -1, state = -1

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 49

State machine 8 ςnum = -1, state = -1
await Task.Delay (200);

It starts in line 73.

We print to the console and
get the awaiter.

If it is not completed
We change the state (so we
know where to come back)

We call
AwaitUnsafeOnCompleted
(see in a bit)

And then we return

Later we continue in case 1
We jump to the label IL_FA
and end in line 84

num = 1, state = -1

27.05.2019 ASYNC WANDERING, ADAM FURMANEK 50

