<DevSum>

Building Practical Zero Trust APIs with .NET9 and Azure Roy Cornelissen

Polisen

Hi, I'm Roy

Cloud Solution Architect at Xebia

roy.cornelissen@xebia.com @roycornelissen linkedin.com/in/roycornelissennl

The concept

Zero Trust is a **security concept** based on the principle of "**never trust, always verify**." It assumes that no component - whether hardware or software - should be implicitly trusted, regardless of whether it is inside or outside the network perimeter.

Every access request must be continuously authenticated, authorized, and validated to ensure security.

Stephen Marsh

April 1994

Zero Trust, and the fact that there is always a Handsome Prince...

John Kindervag - Forrester Research

Zero Trust Architecture - NIST SP 800-207

2018

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf

Perimeterless Security

Zero Trust

Explicitly Verify

Zero Trust teaches us to never trust, and always verify

Limit User Access

Zero Trust uses the principle of least privilege access and limits users

Assume Breach

Zero Trust always assumes breach and verifies each request

Whythis talk?

Mini Bank: Payment handling... overly simplified

Few notes from our CTO

"I'm gonna need you to build this"

- Payments & Accounts API should be available
- Use .NET 9 with C# and host it in containers
- Azure Subscription is setup by Platform team
- There's an agreed drawing somewhere on a paper napkin

Oh, and make it secure That'd be great, mmmkay?

Agreed Drawing

Let's look at the code for a second

Now let's make it

SECUIE

Never Trust, Always Verify never trust, always verify

Identity: hook up to Corporate OAuth

Data Classification: Ensure both input and output validation

Anomalies: Set bounds to our input data

Anomalies: Signal strange behavior

Use least privilege access limit impact and secure data

Just enough access: Only HTTP requests to the endpoints

Just enough access: Restrict the access to the queue and database

Just enough access: Just read specific keys from Vault

Just enough access: Avoid excessive requests

Out of band: Minimize your hosting surface

Assume breach prevent 'lateral movement'

Segmenting access: Isolate service in its own segment

Encrypt: Ensure TLS connections everywhere

Avoid: Unwanted outbound access

Avoid: Access to the host

Use Analytics to spot anomalies: Setup threat detection

© CycloneDX

Let's design our network

minibank payments vnet

See it in action

Wrap Up: Zero Trust as a Developer

- Verify explicitly: always authenticate and authorize based on all available data points, including user identity, location, device health, service or workload, data classification, and anomalies.
 Verify both input and output.
- **Use least-privilege access**: limit user access with just-in-time and just-enough-access, risk-based adaptive polices, and data protection to help secure data and improve productivity.
- **Assume breach**: minimize attack surface in containers, verify end-to-end encryption and use analytics to gain visibility, detect threats, and improve defences.

Thank Moul

Roy Cornelissen

roy.cornelissen@xebia.com

@roycornelissen

linkedin.com/in/roycornelissennl

Demo: github.com/roycornelissen/ztdemo

Photo by Morvanic Lee on Unsplash