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 Enables LLMs to answer questions 

from custom knowledge bases 

consisting of documents

 Text files, PDFs, DOCX files, etc.

 Puts up guardrails that make an 

LLM less likely to hallucinate

 Say "I don't know"

 The #1 use case for LLMs in 

industry today

Retrieval-Augmented Generation (RAG)

Large Language Model

Retriever

Vector Database

Document Store

Chunker



 Vectors of floating-point numbers that quantify text

 Compute similarity of two text samples by measuring distance between 

their embedding vectors using cosine similarity, dot products, or other 

measures

 Useful for semantic-search systems, recommender systems, 

deduplication systems, and other similarity-based systems

Text Embeddings
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Cars that get great gas mileage



from openai import OpenAI

client = OpenAI(api_key='OPENAI_API_KEY')

response = client.embeddings.create(

    model='text-embedding-3-small',

    input='Cars that get great gas mileage'

)

    

embedding = response.data[0].embedding

Generating an Embedding Vector



x = client.embeddings.create(

    model='text-embedding-3-small',

    input='Cars that get great gas mileage'

).data[0].embedding

y = client.embeddings.create(

    model='text-embedding-3-small',

    input='Cars that are fuel-efficient'

).data[0].embedding

similarity = np.dot(np.array(x), np.array(y))

# 0.8362645039208086

Comparing Embedding Vectors



 Databases that store text and optional metadata

 Items are keyed with embedding vectors generated from item text

 Database is queried with embedding vectors generated from query text

 Queries return the top n matches based on embedding similarity

 Contemporary vector databases such as Pinecone, ChromaDB, and 

Qdrant retrieve text samples based on similarity to input text and scale 

to millions of vectors

 Many are free and open-source

 The basis for modern RAG systems

Vector Databases



import chromadb

# Create the collection

client = chromadb.PersistentClient('chroma') # Path to where database is stored

collection = client.create_collection(name='Great_Speeches')

# Add an item

collection.add(

    documents=['Four score and seven years ago...'], # Text of item

    ids=['Paragraph-001'] # Unique ID

)

Creating and Populating a ChromaDB Collection



# Get a reference to the collection

client = chromadb.PersistentClient('chroma')

collection = client.get_collection(name='Great_Speeches')

# Query without metadata filtering

results = collection.query(

    query_texts=['How old is the nation?'], # Query text

    n_results=1

)

Querying a Collection



content = f'''

    Answer the following question, and if you don't know the answer, say "I don't know:"

    Question: Who was the first president of the United States?

    Answer:

    '''

messages = [{ 'role': 'user', 'content': content }]

    

response = client.chat.completions.create(

    model='gpt-4o',

    messages=messages

)

Answering Questions with an LLM



content = f'''

    Answer the following question using the provided context, and if the answer isn't

    contained in the context, say "I don't know:"

Context: {context} # Insert text to be searched for an answer

    Question: Who was the first president of the United States?

    Answer:

    '''

messages = [{ 'role': 'user', 'content': content }]

    

response = client.chat.completions.create(

    model='gpt-4o',

    messages=messages

)

Answering Contextual Questions



 Identifying relevant chunks using embedding vectors isn't perfect

 Rerankers rank chunks in order of relevance using semantic 

understanding and are used to implement two-stage retrieval

 Query vector database for m chunks based on embedding similarity

 Rerank chunks by descending order of relevance and take the top n chunks, 

where n is less than m

Reranking

Cars that get great gas mileage

Cars that don't get great gas mileage

0.9070775256753464

Similarity score computed 

by text-embedding-3-small



 Computes similarity of two text samples using a heightened 

understanding of semantic meaning

 Built by fine-tuning pretrained language models such as BERT or a 

variation of BERT

Cross Encoding

Cars that get great gas mileage

Cars that don't get great gas mileage

0.49530423

Similarity score computed 

by jina-reranker-v1-turbo-en



from sentence_transformers import CrossEncoder

model = CrossEncoder('jinaai/jina-reranker-v1-turbo-en', trust_remote_code=True)

ranked_chunks = model.rank(

    'Cars that get great gas mileage',

    chunks, # Contexts retrieved from vector database

    return_documents=True,

    top_k=5

)

Using jina-reranker-v1-turbo-en 



Demo



 Extend an LLM's powers by 

making user-defined functions 

available to it

 Call external APIs

 Query a database

 Perform math

 LLM parses input, tells you 

which function(s) to call, and 

provides values for function 

parameters

Function Calling

Source: https://platform.openai.com/docs/guides/function-calling



weather_tool = {

    'type': 'function',

    'function': {

        'name': 'get_current_weather',

        'description': 'Retrieves the current weather at the specified location',

        'parameters': {

            'type': 'object',

            'properties': {

                'location': {

                    'type': 'string', # number, string, boolean, array, or object

                    'description': 'The location whose weather is to be retrieved.'

                }

            },

            'required': ['location']

        }

    }

}

Describing a Function to an LLM



client = OpenAI(api_key='OPENAI_API_KEY')

messages = [{ 'role': 'user', 'content': 'Is it raining in London?' }]

response = client.chat.completions.create(

    model='gpt-4o',

    messages=messages,

tools=[weather_tool]

)

Making a Function Available to an LLM



# If one or more tool calls are required, execute them

if response.choices[0].message.tool_calls:

    for tool_call in response.choices[0].message.tool_calls:

        function_name = tool_call.function.name

    

        if function_name == 'get_current_weather':

            # Get the function argument(s) and call the function

            location = json.loads(tool_call.function.arguments)['location']

            output = get_current_weather(location) # Convert to JSON if not already JSON

            # Append the function output to the messages list

            messages.append({

                'role': 'function', 'name': function_name, 'content': output

            })    

Processing Function Calls



# After all function calls are complete, pass the output to the LLM

    response = client.chat.completions.create(

        model='gpt-4o',

        messages=messages # Includes original message and function output

    )

# Show the response

print(response.choices[0].message.content)

Processing Function Calls, Cont.



Demo



prompt = '''

    Create a Python function that accepts an array of numbers as

    input, bubble sorts the numbers, and returns a sorted array

    '''

messages = [{ 'role': 'user', 'content': prompt }]

response = client.chat.completions.create(

    model='gpt-4o',

    messages=messages,

    temperature=0 # Use a low temperature setting for code generation

)

Generating Code



prompt = f'''

    Generate a well-formed SQL query from the following input:

    INPUT: {input}

    

    Assume the database has the following schema:

    SCHEMA: {database_schema}

    '''

response = client.chat.completions.create(

    model='gpt-4o',

    messages=[{ 'role': 'user', 'content': prompt }],

    temperature=0

)

Generating SQL



 Use an LLM to provide a natural-

language interface to databases

 Convert natural-language questions into 

SQL queries

 Execute the queries against the database

 Use an LLM to phrase query results in 

terms a human can understand

 Use CREATE TABLE statements in 

prompts to communicate schema

SQL-Augmented Generation

SQL Query Query Results

LLM

Question Answer

SQL Database



 Even with examples, an LLM will still occasionally generate bad SQL

 Solution: If a query fails, pass it back to the LLM with the original input 

and the error message and ask the LLM to correct the query

Self-Correcting Queries

prompt = '''
    The SQL query below was generated from the input below. The query failed and
    returned the error message below. Modify the query to rectify the error.

    INPUT: {input}
    SCHEMA: {database_schema)
    QUERY: {sql}
    ERROR: {error_message}
    '''



Demo



 Add to a model's knowledge base by training with additional samples 

at a reduced learning rate

 Expand a model's knowledge to include current events

 Make a model aware of domain-specific terms and information

 Train a model to mimic someone's style or tone of voice

Fine-Tuning

Pros Cons

▪ Shorter prompts yield less cost and less 

latency

▪ Model can inherently do things it couldn't 

do before

▪ Time and expense required to assemble 

training data and fine-tune the model

▪ To benefit from improvements to the base 

model, fine-tuning must be repeated



{ "messages": [

    { "role": "system", "content": "You are a helpful HR person" }, # Optional

    { "role": "user", "content": "Who is our current CEO?" },

    { "role": "assistant", "content": "Satya Nadella" }

]}

{ "messages": [

    { "role": "system", "content": "You are a helpful HR person" },

    { "role": "user", "content": "How much PTO do I receive each year?" },

    { "role": "assistant", "content": "Microsoft employees receive unlimited PTO" }

]}

      .

      .

      .

JSONL



client = OpenAI(api_key='OPENAI_API_KEY')

train_file = client.files.create(

    file=open('PATH_TO_JSONL_FILE', 'rb'),

    purpose='fine-tune'

)

Uploading a Training File



model = client.fine_tuning.jobs.create(

    training_file=train_file.id,

     model='gpt-4o-mini-2024-07-18',

     hyperparameters={

        'n_epochs': 5,

        'batch_size': 5,

        'learning_rate_multiplier': 0.2

    }

)

Fine-Tuning a Model



from datetime import datetime

client = OpenAI(api_key='OPENAI_API_KEY')

jobs = client.fine_tuning.jobs.list()

for job in jobs:

    if job.status == 'succeeded':

        completion_date = datetime.utcfromtimestamp(job.finished_at) \

            .strftime('%Y-%m-%d %H:%M:%S')

        print(f'{job.fine_tuned_model} ({completion_date})')

# ft:gpt-4o-mini-2024-07-18:personal::APFNGbzX (2024-11-02 20:51:00)

Enumerating Fine-Tuned Models



client = OpenAI(api_key='OPENAI_API_KEY')

messages = [{ 'role': 'user', 'content': "Who is Microsoft's CEO?" }]

response = client.chat.completions.create(

    model=model, # e.g., ft:gpt-4o-mini-2024-07-18:personal::APFNGbzX

    messages=messages

)

print(response.choices[0].message.content)

Calling a Fine-Tuned Model



Demo
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