
Making LLMs Smarter
Jeff Prosise

https://wintellect.blob.core.windows.net/public/devsum.zip

 Enables LLMs to answer questions

from custom knowledge bases

consisting of documents

 Text files, PDFs, DOCX files, etc.

 Puts up guardrails that make an

LLM less likely to hallucinate

 Say "I don't know"

 The #1 use case for LLMs in

industry today

Retrieval-Augmented Generation (RAG)

Large Language Model

Retriever

Vector Database

Document Store

Chunker

 Vectors of floating-point numbers that quantify text

 Compute similarity of two text samples by measuring distance between

their embedding vectors using cosine similarity, dot products, or other

measures

 Useful for semantic-search systems, recommender systems,

deduplication systems, and other similarity-based systems

Text Embeddings

-0.43 0.02 0.85 0.03 -0.40 0.07 -0.13 0.25 0.43 …

Cars that get great gas mileage

from openai import OpenAI

client = OpenAI(api_key='OPENAI_API_KEY')

response = client.embeddings.create(

 model='text-embedding-3-small',

 input='Cars that get great gas mileage'

)

embedding = response.data[0].embedding

Generating an Embedding Vector

x = client.embeddings.create(

 model='text-embedding-3-small',

 input='Cars that get great gas mileage'

).data[0].embedding

y = client.embeddings.create(

 model='text-embedding-3-small',

 input='Cars that are fuel-efficient'

).data[0].embedding

similarity = np.dot(np.array(x), np.array(y))

0.8362645039208086

Comparing Embedding Vectors

 Databases that store text and optional metadata

 Items are keyed with embedding vectors generated from item text

 Database is queried with embedding vectors generated from query text

 Queries return the top n matches based on embedding similarity

 Contemporary vector databases such as Pinecone, ChromaDB, and

Qdrant retrieve text samples based on similarity to input text and scale

to millions of vectors

 Many are free and open-source

 The basis for modern RAG systems

Vector Databases

import chromadb

Create the collection

client = chromadb.PersistentClient('chroma') # Path to where database is stored

collection = client.create_collection(name='Great_Speeches')

Add an item

collection.add(

 documents=['Four score and seven years ago...'], # Text of item

 ids=['Paragraph-001'] # Unique ID

)

Creating and Populating a ChromaDB Collection

Get a reference to the collection

client = chromadb.PersistentClient('chroma')

collection = client.get_collection(name='Great_Speeches')

Query without metadata filtering

results = collection.query(

 query_texts=['How old is the nation?'], # Query text

 n_results=1

)

Querying a Collection

content = f'''

 Answer the following question, and if you don't know the answer, say "I don't know:"

 Question: Who was the first president of the United States?

 Answer:

 '''

messages = [{ 'role': 'user', 'content': content }]

response = client.chat.completions.create(

 model='gpt-4o',

 messages=messages

)

Answering Questions with an LLM

content = f'''

 Answer the following question using the provided context, and if the answer isn't

 contained in the context, say "I don't know:"

Context: {context} # Insert text to be searched for an answer

 Question: Who was the first president of the United States?

 Answer:

 '''

messages = [{ 'role': 'user', 'content': content }]

response = client.chat.completions.create(

 model='gpt-4o',

 messages=messages

)

Answering Contextual Questions

 Identifying relevant chunks using embedding vectors isn't perfect

 Rerankers rank chunks in order of relevance using semantic

understanding and are used to implement two-stage retrieval

 Query vector database for m chunks based on embedding similarity

 Rerank chunks by descending order of relevance and take the top n chunks,

where n is less than m

Reranking

Cars that get great gas mileage

Cars that don't get great gas mileage

0.9070775256753464

Similarity score computed

by text-embedding-3-small

 Computes similarity of two text samples using a heightened

understanding of semantic meaning

 Built by fine-tuning pretrained language models such as BERT or a

variation of BERT

Cross Encoding

Cars that get great gas mileage

Cars that don't get great gas mileage

0.49530423

Similarity score computed

by jina-reranker-v1-turbo-en

from sentence_transformers import CrossEncoder

model = CrossEncoder('jinaai/jina-reranker-v1-turbo-en', trust_remote_code=True)

ranked_chunks = model.rank(

 'Cars that get great gas mileage',

 chunks, # Contexts retrieved from vector database

 return_documents=True,

 top_k=5

)

Using jina-reranker-v1-turbo-en

Demo

 Extend an LLM's powers by

making user-defined functions

available to it

 Call external APIs

 Query a database

 Perform math

 LLM parses input, tells you

which function(s) to call, and

provides values for function

parameters

Function Calling

Source: https://platform.openai.com/docs/guides/function-calling

weather_tool = {

 'type': 'function',

 'function': {

 'name': 'get_current_weather',

 'description': 'Retrieves the current weather at the specified location',

 'parameters': {

 'type': 'object',

 'properties': {

 'location': {

 'type': 'string', # number, string, boolean, array, or object

 'description': 'The location whose weather is to be retrieved.'

 }

 },

 'required': ['location']

 }

 }

}

Describing a Function to an LLM

client = OpenAI(api_key='OPENAI_API_KEY')

messages = [{ 'role': 'user', 'content': 'Is it raining in London?' }]

response = client.chat.completions.create(

 model='gpt-4o',

 messages=messages,

tools=[weather_tool]

)

Making a Function Available to an LLM

If one or more tool calls are required, execute them

if response.choices[0].message.tool_calls:

 for tool_call in response.choices[0].message.tool_calls:

 function_name = tool_call.function.name

 if function_name == 'get_current_weather':

 # Get the function argument(s) and call the function

 location = json.loads(tool_call.function.arguments)['location']

 output = get_current_weather(location) # Convert to JSON if not already JSON

 # Append the function output to the messages list

 messages.append({

 'role': 'function', 'name': function_name, 'content': output

 })

Processing Function Calls

After all function calls are complete, pass the output to the LLM

 response = client.chat.completions.create(

 model='gpt-4o',

 messages=messages # Includes original message and function output

)

Show the response

print(response.choices[0].message.content)

Processing Function Calls, Cont.

Demo

prompt = '''

 Create a Python function that accepts an array of numbers as

 input, bubble sorts the numbers, and returns a sorted array

 '''

messages = [{ 'role': 'user', 'content': prompt }]

response = client.chat.completions.create(

 model='gpt-4o',

 messages=messages,

 temperature=0 # Use a low temperature setting for code generation

)

Generating Code

prompt = f'''

 Generate a well-formed SQL query from the following input:

 INPUT: {input}

 Assume the database has the following schema:

 SCHEMA: {database_schema}

 '''

response = client.chat.completions.create(

 model='gpt-4o',

 messages=[{ 'role': 'user', 'content': prompt }],

 temperature=0

)

Generating SQL

 Use an LLM to provide a natural-

language interface to databases

 Convert natural-language questions into

SQL queries

 Execute the queries against the database

 Use an LLM to phrase query results in

terms a human can understand

 Use CREATE TABLE statements in

prompts to communicate schema

SQL-Augmented Generation

SQL Query Query Results

LLM

Question Answer

SQL Database

 Even with examples, an LLM will still occasionally generate bad SQL

 Solution: If a query fails, pass it back to the LLM with the original input

and the error message and ask the LLM to correct the query

Self-Correcting Queries

prompt = '''
 The SQL query below was generated from the input below. The query failed and
 returned the error message below. Modify the query to rectify the error.

 INPUT: {input}
 SCHEMA: {database_schema)
 QUERY: {sql}
 ERROR: {error_message}
 '''

Demo

 Add to a model's knowledge base by training with additional samples

at a reduced learning rate

 Expand a model's knowledge to include current events

 Make a model aware of domain-specific terms and information

 Train a model to mimic someone's style or tone of voice

Fine-Tuning

Pros Cons

▪ Shorter prompts yield less cost and less

latency

▪ Model can inherently do things it couldn't

do before

▪ Time and expense required to assemble

training data and fine-tune the model

▪ To benefit from improvements to the base

model, fine-tuning must be repeated

{ "messages": [

 { "role": "system", "content": "You are a helpful HR person" }, # Optional

 { "role": "user", "content": "Who is our current CEO?" },

 { "role": "assistant", "content": "Satya Nadella" }

]}

{ "messages": [

 { "role": "system", "content": "You are a helpful HR person" },

 { "role": "user", "content": "How much PTO do I receive each year?" },

 { "role": "assistant", "content": "Microsoft employees receive unlimited PTO" }

]}

 .

 .

 .

JSONL

client = OpenAI(api_key='OPENAI_API_KEY')

train_file = client.files.create(

 file=open('PATH_TO_JSONL_FILE', 'rb'),

 purpose='fine-tune'

)

Uploading a Training File

model = client.fine_tuning.jobs.create(

 training_file=train_file.id,

 model='gpt-4o-mini-2024-07-18',

 hyperparameters={

 'n_epochs': 5,

 'batch_size': 5,

 'learning_rate_multiplier': 0.2

 }

)

Fine-Tuning a Model

from datetime import datetime

client = OpenAI(api_key='OPENAI_API_KEY')

jobs = client.fine_tuning.jobs.list()

for job in jobs:

 if job.status == 'succeeded':

 completion_date = datetime.utcfromtimestamp(job.finished_at) \

 .strftime('%Y-%m-%d %H:%M:%S')

 print(f'{job.fine_tuned_model} ({completion_date})')

ft:gpt-4o-mini-2024-07-18:personal::APFNGbzX (2024-11-02 20:51:00)

Enumerating Fine-Tuned Models

client = OpenAI(api_key='OPENAI_API_KEY')

messages = [{ 'role': 'user', 'content': "Who is Microsoft's CEO?" }]

response = client.chat.completions.create(

 model=model, # e.g., ft:gpt-4o-mini-2024-07-18:personal::APFNGbzX

 messages=messages

)

print(response.choices[0].message.content)

Calling a Fine-Tuned Model

Demo

	Default Section
	Slide 1: Making LLMs Smarter Jeff Prosise https://wintellect.blob.core.windows.net/public/devsum.zip
	Slide 2: Retrieval-Augmented Generation (RAG)
	Slide 3: Text Embeddings
	Slide 4: Generating an Embedding Vector
	Slide 5: Comparing Embedding Vectors
	Slide 6: Vector Databases
	Slide 7: Creating and Populating a ChromaDB Collection
	Slide 8: Querying a Collection
	Slide 9: Answering Questions with an LLM
	Slide 10: Answering Contextual Questions
	Slide 11: Reranking
	Slide 12: Cross Encoding
	Slide 13: Using jina-reranker-v1-turbo-en
	Slide 14
	Slide 15: Function Calling
	Slide 16: Describing a Function to an LLM
	Slide 17: Making a Function Available to an LLM
	Slide 18: Processing Function Calls
	Slide 19: Processing Function Calls, Cont.
	Slide 20
	Slide 21: Generating Code
	Slide 22: Generating SQL
	Slide 23: SQL-Augmented Generation
	Slide 24: Self-Correcting Queries
	Slide 25
	Slide 26: Fine-Tuning
	Slide 27: JSONL
	Slide 28: Uploading a Training File
	Slide 29: Fine-Tuning a Model
	Slide 30: Enumerating Fine-Tuned Models
	Slide 31: Calling a Fine-Tuned Model
	Slide 32

