
AI for .NET developers
Gill Cleeren

CTO Xebia Belgium – Pluralsight Author

Gill Cleeren
CTO Xebia Belgium Microsoft Services

Pluralsight Author
@gillcleeren – gill.cleeren@xebia.com

My courses: gicl.me/mypscourses

Want to learn more?
Watch my Pluralsight courses!
www.pluralsight.com/courses/building-ai-enabled-dot-net-applications
www.pluralsight.com/courses/semantic-kernel-c-sharp-building-ai-applications

Overview
• The 5-minute (or a few more) tour of AI

• Using OpenAI in .NET

• Working with Azure AI Services

• Understanding Semantic Kernel (incl agents)

The 5-minute
(or a few more)

tour of AI

Computers are good at
executing instructions…

But now they can also
think and learn!

Bringing AI into the mix

• Users can have a lot of benefits
• We will get insights into large sets

of data that weren’t possible
before

• Spot trends that we can’t on our
own

• Developers can create smarter
applications

• English (or another language)
becomes a programming language

Some
terminology

How LLMs
work

• Once upon a…
• Once upon a time…
• Once upon a time, in…
• Once upon a time, in a…
• Once upon a time, in a land…

ChatGPT

Types of models
• Text to text

• Text to image

• Text to video

• Image to text

• Speech to text

• Multimodal is becoming the norm nowadays

Interacting with models

ChatGPT

Copilot

Your app

Interacting with models

ChatGPT

Copilot

Your app

API

Interacting with models
• The prompt

• Allows us to “ask” the model to do something
• Outcome depends on how good the prompt is

• Bad prompt: “Tell me about history”
• Too vague, broad, no context

• Good prompt: “Tell me about the history of ancient Rome”
• Clear focus and topic, but still “open” for the AI to interpret the target

• Great prompt: “Summarize the key political, cultural, and technological
advancements of ancient Rome between 500 BC and 500 AD in less than 200
words”
• Very specific, time frame specified, length included

And how do we now use
all this in .NET apps?

Interacting with models

APISDK

Options to interact with
AI models from .NET
• OpenAI

• OpenAI .NET API library
• Wrapper around the OpenAI API
• Exposes functionalities of OpenAI

models

• Azure OpenAI Service
• Managed version of OpenAI models in

Azure
• Adds many more features around

security and privacy around public
version of OpenAI models

Options to interact with
AI models from .NET

• Azure AI Services
• Set of managed AI services in Azure
• Pre-built APIs for vision, language,

speech
• SDKs for nearly all services to integrate

into apps

• Semantic Kernel
• Lightweight SDK
• Focused on simplifying integrating

different models in .NET (and other
languages)

Options to interact with
AI models from .NET

• MCP C# SDK
• Wrapper around the Model Context

Protocol
• Enables LLMs to invoke tools via

structured API calls
• Azure AI Foundry

• Enterprise-grade model
development platform on Azure

• Supports training, fine-tuning,
evaluation, and deployment of
custom LLMs

• Strong support for agentic
development

Using OpenAI in .NET

Using OpenAI

• Creators of ChatGPT, Dall-E and Whisper

• Expose functionalities of models through APIs

• We can use them without knowing AI expertise

• Solid integration and backing in Azure

• API allows for HTTP requests to any of their
models
• Works “everywhere”

• API usage requires API key
• Paid, not combined with paid ChatGPT

access

Interacting with the
API
Authorization: Bearer YOUR_API_KEY

POST https://api.openai.com/v1/chat
/completions

{
 "model": "gpt-4o",
 "messages": [{"role": "user",
 "content": "Explain AI in simple
 terms."}],
 "max_tokens": 100,
 "temperature": 0.7
}

DEMO

Working with platform.openai.com

The OpenAI
.NET API
Library

Wrapper
around the API
Instead of making

HTTP requests
manually

Nuget
package

Supports
all

models

API key
needs to
be added

Simple chat
completion

ChatClient client = new(model: "gpt-4o",
Environment.GetEnvironmentVariable("OPENAI_API_KEY"));

ChatCompletion completion = client.CompleteChat("Say
'Hello AI world'");

Streaming
content

AsyncCollectionResult<StreamingChatCompletionUpdate>
completionUpdates =
 chatClient.CompleteChatStreamingAsync(chatMessages);

await foreach (StreamingChatCompletionUpdate completionUpdate
in completionUpdates)

{

 foreach (ChatMessageContentPart contentPart
 in completionUpdate.ContentUpdate)

 {

 Console.Write(contentPart.Text);

 }

}

DEMO
Using the OpenAI .NET API Library

 Regular and streaming

 History

DEMO
Generating images

Adding
function
calling

• Model doesn’t “know” everything

• Function calling can call into local functions in the app

• External system can be used to bring in this information

• Flow
• “App” sends prompt and definition of functions
• If needed, the model will ask to invoke local function,

including parameters
• Prompt result of function call back to model

DEMO
Function calling

DEMO
Adding useful AI into a real application

Working with
Azure AI Services

What is Azure AI
Services?

Set of cloud-based AI tools by Microsoft

Pre-built services on already trained
models

Build advanced features with limited (or
none at all) knowledge of AI or ML

Accessible using APIs and nearly
always using SDKs (including C#)

Available
services in
Azure AI
Services

Language

Translator

Speech

Vision

Search

And many more!

Using Azure AI
Language

NLP features for analyzing and
understanding text

Many different features

• Language detection
• Sentiment analysis
• Summarization
• And much more!

Can be used with pre-built or custom-
trained models

Available to use from our apps using SDK or
HTTP requests

DEMO
Using Azure AI Language

DEMO
Adding Azure AI Services to a real application

Understanding Semantic
Kernel

Understanding
Semantic Kernel

.NET library, created by Microsoft

Goal: make AI integration into apps easier

Support for many tasks Text generation, image
generation, chat…

Abstraction to work with
different AI models

Standardize model
interactions

Use from different languages including C#, Java
and Python

Getting Started
with Semantic
Kernel

Add in the
correct Nuget
package

01
Connect with
a model

02
Bring in one
or more API
keys

03

The kernel in
Semantic Kernel

Central component

Orchestrator between app and AI models

Acts as DI container to make AI services available
for use in app

Manages services and plugins

Services: AI and other services

Plugins Components to bring in
other functionality

Adding chat
completion
using SK

Kernel kernel = Kernel.CreateBuilder()

 .AddOpenAIChatCompletion(
 modelId: modelName,
 apiKey:
 Environment.GetEnvironmentVariable("OPENAI_API_KEY"))
 .Build();

Creating a
simple chat
app using SK

string response = string.Empty;

while (response != "quit")

{

 Console.WriteLine("Enter your message:");

 response = Console.ReadLine();

 Console.WriteLine(await kernel.InvokePromptAsync(response));

}

DEMO
First steps with Semantic Kernel

Plugins in Semantic
Kernel
• Remember Function Calling

• Works but is through the OpenAI
quite verbose

• Much simpler from SK using Plugins

public class TimePlugin

{

[KernelFunction]

[Description("Gets the current date and time in UTC")]

public string GetCurrentDateAndTime()

{

return DateTime.UtcNow.ToString("R");

}

}

Bringing in Plugins
kernel.ImportPluginFromType<TimePlugin>();

OpenAIPromptExecutionSettings settings =
 new() { ToolCallBehavior =
ToolCallBehavior.AutoInvokeKernelFunctions };

DEMO
Using plugins

DEMO
Using Semantic Kernel from our real application

So far…

Our app was “single-agent”

One single “app” (or agent) that does everything

Introducing
AI Agents

Autonomous system

Leverages AI models,
memory, and plugins

Designed to work
collaboratively with each
other

Organizing a Large Event as a “Single Agent”

Using a Team

Using AI Agents

Assign tasks to specialized agents

Break down complexity into smaller parts

Extra
packages
will be
required

Microsoft.SemanticKernel.Agents.Abstractions

Microsoft.SemanticKernel.Agents.Core

Microsoft.SemanticKernel.Agents.OpenAI

Creating an
AI Agent

ChatCompletionAgent venueAgent = new()

{

Instructions = venueAgentInstructions,

Name = "VenueAgent",

Kernel = kernel

};

Important concepts when working with agents

GROUP CHAT SELECTION STRATEGY TERMINATION
STRATEGY

Demo: AI Agents with Semantic Kernel

Summary

• .NET can definitely be used to create AI-enabled
applications

• OpenAI provides a very solid API to access all
their models

• Azure AI Services is an easy way to integrate AI-
related functionality to any app

• Semantic Kernel provides a wrapper and
abstracts away the differences

Questions?

Thank you!

	Intro
	Slide 1: AI for .NET developers
	Slide 2
	Slide 3: Want to learn more? Watch my Pluralsight courses!
	Slide 4: Overview

	The 5-minute (or a few more) tour of AI
	Slide 5: The 5-minute (or a few more) tour of AI
	Slide 6: Computers are good at executing instructions… But now they can also think and learn!
	Slide 7: Bringing AI into the mix
	Slide 8: Some terminology
	Slide 9: How LLMs work
	Slide 10: ChatGPT
	Slide 12: Types of models
	Slide 13: Interacting with models
	Slide 14: Interacting with models
	Slide 15: Interacting with models
	Slide 16: And how do we now use all this in .NET apps?
	Slide 17: Interacting with models
	Slide 18: Options to interact with AI models from .NET
	Slide 19: Options to interact with AI models from .NET
	Slide 20: Options to interact with AI models from .NET

	Using OpenAI in .NET
	Slide 21: Using OpenAI in .NET
	Slide 22: Using OpenAI
	Slide 23: Interacting with the API
	Slide 24: DEMO
	Slide 25: The OpenAI .NET API Library
	Slide 26: Simple chat completion
	Slide 27: Streaming content
	Slide 28: DEMO
	Slide 30: DEMO
	Slide 31: Adding function calling
	Slide 33: DEMO
	Slide 34: DEMO

	Working with Azure AI Services
	Slide 35: Working with Azure AI Services
	Slide 36: What is Azure AI Services?
	Slide 37: Available services in Azure AI Services
	Slide 38: Using Azure AI Language
	Slide 41: DEMO
	Slide 44: DEMO

	Understanding Semantic Kernel
	Slide 45: Understanding Semantic Kernel
	Slide 46: Understanding Semantic Kernel
	Slide 47: Getting Started with Semantic Kernel
	Slide 48: The kernel in Semantic Kernel
	Slide 49: Adding chat completion using SK
	Slide 50: Creating a simple chat app using SK
	Slide 51: DEMO
	Slide 55: Plugins in Semantic Kernel
	Slide 56: Bringing in Plugins
	Slide 57: DEMO
	Slide 58: DEMO
	Slide 59: So far…
	Slide 60: Introducing AI Agents
	Slide 61: Organizing a Large Event as a “Single Agent”
	Slide 62: Using a Team
	Slide 63: Using AI Agents
	Slide 64: Extra packages will be required
	Slide 65: Creating an AI Agent
	Slide 66: Important concepts when working with agents
	Slide 67: Demo: AI Agents with Semantic Kernel

	Summary
	Slide 68: Summary
	Slide 69: Questions?
	Slide 70: Thank you!
	Slide 71: Watch the full courses on Pluralsight!

